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Exploiting color name space for salient object
detection
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Abstract
In this paper, we will investigate the contribution of color names for the task of salient
object detection. An input image is first converted to color name space, which is consisted
of 11 probabilistic channels. By exploiting a surroundedness cue, we obtain a saliency
map through a linear combination of a set of sequential attention maps. To overcome the
limitation of only using the surroundedness cue, two global cues with respect to color
names are invoked to guide the computation of a weighted saliency map. Finally, we inte-
grate the above two saliency maps into a unified framework to generate the final result.
In addition, an improved post-processing procedure is introduced to effectively suppress
image backgrounds while uniformly highlight salient objects. Experimental results show
that the proposed model produces more accurate saliency maps and performs well against
twenty-one saliency models in terms of three evaluation metrics on three public data sets.

Keywords Saliency · Salient object detection · Figure-ground segregation ·
Surroundedness · Color names · Color name space

1 Introduction

Visual attention, one of intrinsic properties of human vision to extract important information
from abundant visual inputs, is concerned with the understanding and modeling of biologi-
cal perception systems. Psychophysical and physiological studies indicate that the selective
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attention mechanism, which can be directed by human visual system to gaze the most con-
spicuous location and then shift to the next conspicuous location, plays an important role
in the early representation [20]. Since these conspicuous locations might be the feature
cues based salient regions, the computational visual attention aims to deal with the auto-
matic saliency detection in images or videos. In computer vision, the main tasks of saliency
research include eye fixation prediction which attempts to predict human fixation data [11,
17, 18, 23, 31, 52], and salient object detection for the localization and identification of
salient regions in visual scenes [3, 7, 48–50].

Over the past decades, saliency detection has been widely used in many computer
vision applications, including image segmentation [34], object detection [26], object
recognition [36], visual tracking [5], image and video compression [15], and video summa-
rization [21]. Generally, the resultant map of saliency detection is called “saliency map”,
which topographically describes the conspicuity of each location in the whole scene. From
a computational point of view, saliency detection techniques can be divided into two cat-
egories: slow, top-down, task-dependent manner; and rapid, bottom-up, task-independent
manner [32]. Although top-downmanner is indispensable for guiding the attention to behav-
iorally relevant objects, the salient features based bottom-up attention is more closely related
to an early stage of visual processing [20, 44] and has been investigated by numerous
researchers.

In the feature integration theory of attention, a visual scene is initially coded along a num-
ber of elementary features, e.g., color, orientation, brightness, and spatial frequency [44].
The selective attention mechanism [20] suggests to compute these elementary features in
parallel and combine the resultant cortical topographic maps into a saliency map. Hence, a
majority of bottom-up saliency models aim to investigate different visual features and apply
them to define the saliency of a pixel or a region. In these models, the contrast based detec-
tion is one of the most commonly adopted techniques. As no prior knowledge regarding
salient objects is provided, the contrast based detection mainly focuses on two aspects: local
center-surround difference, and global rarity.

For local center-surround difference, one of the most influential bottom-up saliency
models is introduced by Itti et al. [18]. Basing on the Koch and Ullman’s early repre-
sentation model [20], Itti et al. extract various features at multiple resolutions and use
center-surround differences between different resolutions to form a saliency map. Ma and
Zhang [27] regard an image as a perceive field and define the saliency by measuring dif-
ferences between the stimuli perceived by different perception units. Goferman et al. [12]
exploit four basic principles of human visual attention to detect the context-aware saliency,
i.e., local low-level features, global considerations, visual organization rules, and high-
level factors. Furthermore, by means of the Kullback-Leibler divergence, an information-
theoretic approach is proposed to extract saliency from multi-scale center-surround feature
distributions [19].

For another, the global rarity based saliency models tend to find rare features from an
image. Achanta et al. [3] propose a frequency-tuned (FT) approach, which defines the pixel-
wise saliency by comparing the color of each pixel with the average image color in LAB
color space. In [7], Cheng et al. present a histogram contrast (HC) based saliency method,
which uses color statistics to compute saliency. In addition, a regional contrast (RC) based
saliency method is introduced in that work, which simultaneously evaluates global contrast
differences and spatial coherences. In order to reduce the complexity of calculating the color
contrasts between regions, we subsequently follow the RC method and propose a regional
principal color (RPC) based saliency method [25] by only retaining the most frequently
occurred color of each superpixel. Besides the widely used color features, some other visual
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cues are also exploited in the global contrast based saliency models, such as orientation [43],
intensity [51], spectrum [17, 23], and texture [38].

In this paper, we also focus on the bottom-up and contrast-based saliency detection tech-
nique. Actually, if we review the task of salient object detection, we can see it has two
clear implications: one is that the detected regions should be salient in an image, the other
is that these salient regions should contain objects of any category. Gestalt psychological
studies indicate that objects lying in the foreground may result in being more salient than
background elements [30, 37]. Since salient objects are more likely to be involved in fore-
ground regions, two questions consequently arise: 1) How to extract foreground regions? 2)
How to define the contrast-based saliency? For the first question, one answer is to employ
figure-ground segregation.

Recently, a simple and effective saliency model called “Boolean Map based Saliency”
(BMS) is proposed in [52]. The BMS model first demonstrates that the rarity based models
sometimes ignore global structure information and falsely highlight high contrast regions.
Then following the suggestion of Gestalt psychology that the surroundedness may influence
figure-surround segregation [33], BMS exploits a set of randomly sampled boolean maps
to model the saliency of foreground regions. By using different parameter settings, BMS
is suitable for both eye fixation prediction and salient object detection, and achieves the
state-of-the-art performance.

Here, we only discuss its results of salient object detection. Although three channels of
LAB color space are chosen as the randomly sampled feature maps, the essence of BMS
is the use of the closed outer contours of foreground regions. The effect of salient object
detection is somewhat equivalent to applying it to a lightness image. As illustrated in Fig. 1,
it is interesting that if we convert the input RGB image (Fig. 1a) to LAB color space and
apply BMS to the L channel (normalized to [0, 255], see Fig. 1d), we obtain two similar
saliency maps (cf. Fig. 1b and e). The detected salient regions have similar characteristics,
that is, they are enclosed by the outer boundaries and not connected to the image borders.
Obviously, the color information is discarded in this case.

In this paper, we couple a surroundedness cue with two global color cues into a uni-
fied framework by extending BMS to Color Name Space, which is obtained by using the
PLSA-bg color naming model [46] (or called PLSA-ind in [47]). In computer vision, color

Fig. 1 a RGB image from ECSSD data set [40, 48], and the saliency maps generated by using b BMS [52]
and c our model, respectively. d The L channel obtained by converting a to LAB color space, and the resultant
saliency maps of e BMS and f our model
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names are linguistic color labels assigned to image pixels. The linguistic study of Berlin and
Kay [4] indicates that there are eleven basic color terms (i.e., color names) in the English
language, as given in Table 1. In the proposed model, both the probabilities and statistics of
eleven color names are simultaneously incorporated to measure color differences. The topo-
logical structure information also participates in the computation of the color names based
saliency, hence several weighted master attention maps are generated. Through a simple lin-
ear combination and an improved post-processing procedure, we obtain two saliency maps
and then fuse them into a single map. Finally, several image processing procedures, includ-
ing truncation operation, intensity mapping, and hole-filling, are invoked to infer the final
result. Figure 1c and f show the saliency results produced by the proposed model. We can
see that the color name space based saliency shows higher precision. It demonstrates that
the color cue is of as much importance as the surroundedness cue.

In the following sections, the proposed model will be called “CNS”. The main contribu-
tions of this paper include:

1) By expoliting color name space, we propose an integrated framework to effectively
compute the color based saliency.

2) A weighted global contrast mechanism is introduced to incorporate more color cues
into the topological structure information of an image.

3) An improved post-processing procedure is proposed to uniformly highlight salient
objects, which are easy to be segmented.

The remainder of this paper is organized as follows. Section 2 is the review of related
work. The proposed salient object detection model is presented in Section 3. In Section 4,
performance comparisons are made with three benchmark data sets. Conclusions and
possible extensions are presented in Section 5.

2 Related work

We base the proposed model on BMS [52] and PLSA-bg [46]. The key idea of BMS is
the use of the surroundedness cue, which can be characterized by a set of boolean maps.
The BMS model first converts an input RGB image I to LAB color space, then scales each
channel to [0, 255]. Subsequently, BMS chooses each channel as a feature map, and uses a
set of fixed thresholds to binarize each feature map to boolean maps Bi as follows [52]:

Bi = THRESH (φ(I ), θ) , (1)

where φ(I) is a feature map of I , and θ represents a fixed threshold. Based on a Gestalt prin-
ciple of figure-ground segregation [33], BMS performs several morphological operations

Table 1 Eleven basic color terms in the English language

i 1 2 3 4 5

Term (ti ) black blue brown grey green

RGB (ci ) [0 0 0] [0 0 1] [.5 .4 .25] [.5 .5 .5] [0 1 0]

6 7 8 9 10 11

Orange pink purple red white yellow

[1 .8 0] [1 .5 1] [1 0 1] [1 0 0] [1 1 1] [1 1 0]
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to generate a set of attention maps, in which all the regions connected to the image bor-
ders are masked out since they are not surrounded by any closed outer contour. The final
saliency map is simply the average of these attention maps, followed by a morphological
post-processing.

The surroundedness cue is also invoked in the proposed CNS model. However, differ-
ent from BMS, CNS uses color name space instead of LAB color space. In the field of
document analysis, the standard PLSA model [16] computes the conditional probability of
a word w in a document d , and estimates the distributions p(z|d) and p(w|z) by using
an Expectation-Maximization (EM) algorithm, where z represents a latent topic. Consid-
ering that PLSA does not exploit the color name labels of training images, the PLSA-bg
model [46] represents an image d (i.e., document) as a LAB color histogram with a group
of color bins (i.e., words), and decomposes d into the foreground distribution according
to a given color name label ld (i.e., topic) and the background distribution shared between
all training images. By estimating the mixing proportion of foreground versus background,
color name distributions, and background model, the probability of a color name for a given
image pixel is represented as

p(z|w) ∝ p(z)p(w|z) , (2)

where the prior over eleven color names is taken to be uniform.
Besides the probability information of color names, the proposed model makes use of a

statistical cue. This is achieved by a Color Name Histogram, in which eleven color name
bins are involved for measuring color differences. In [7], the HC method directly uses color
statistics to define the saliency value of each color bin. Compared with HC, our model
solely exploits the color name histogram to compute eleven weighting coefficients, and
further produces eleven weighted master attention maps. The color name histogram does
not participate in the generation of original attention maps, which are still determined by
the surroundedness cue as used in BMS.

3 Color name space based saliency detection

To incorporate more color information, we extend BMS [52] from LAB color space to color
name space. Two saliency cues, i.e., surroundedness and color, are separately invoked to
produce two saliency maps. They are fused into a single map for generating the final result.
These steps are described in the following sections.

3.1 General framework

As illustrated in Fig. 2, the integrated framework of CNS includes two computational
pipelines.

Pipeline I An input RGB image is first resized to 400 pixels in width and converted to color
name space. The resultant space is composed of 11 monochrome intensity components,
namely Color Name Channel in this paper. Following BMS [52], a set of attention maps
is generated based on figure-ground segregation. The attention maps of each channel are
linearly fused to produce a master attention map. Finally, the mean attention map Ā is
obtained by combining 11 master attention maps and further post-processed to generate the
saliency map S.
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Fig. 2 Framework of the proposed CNS model

Pipeline II The resized RGB image is first converted to a Color Name Image, from which
two statistical characteristics are derived: 1) a color name histogram which consists of 11
color bins, and 2) 11 binary index matrices where each of them represents the distribution
of a corresponding color name. By exploiting two kinds of weighting patterns, we generate
11 weighted master attention maps. All the master attention maps obtained in Pipeline I also
participate in this process. Finally, the weighted saliency map Sw is obtained by using the
same combination and post-processing as used in Pipeline I.

Combination The saliency maps S and Sw are fed into a truncation operation to produce
the mean saliency map S̄, which simultaneously codes for the topological structure and color
conspicuity over the entire image. In addition, we apply another post-processing procedure
to generate the final saliency result ̂S, in which the salient region is evenly highlighted and
smoothed for convenience in the task of salient object segmentation.

3.2 Color name channel based attentionmap

First, we directly use the im2c function provided by [46]1 to generate the color name space
C = {C1, C2, . . . , C11}, where each color name channel Ci has the range of values [0, 1].
Thus, for the resized RGB image I , the color representation of each pixel is mapped from
a 3-dimensional (3-D) RGB value to a probabilistic 11-dimensional (11-D) vector which
sums up to 1. Considering that the topological structure of I is independent of the perceptual
color coherence, each color name channel is treated equally and normalized to [0, 255] for
the subsequent thresholding operation.

Then, we use a set of sequential thresholds from 0 to 255 with a step size of δ to binarize
each color name channel Ci ∈ C to n boolean maps

B
j
i = THRESH

(

Ci, θj

)

, (3)

where at each threshold θj , the above function generates a boolean map B
j
i by setting all the

values above θj to 1s and replacing all the others with 0s. After two morphological opera-

tions on B
j
i , including closing and hole-filling, we use a clear-border algorithm [41] to mask

out all the foreground regions connected to the image borders, and obtain a corresponding
attention map A

j
i . The same processing steps are also executed for the complement map of

1http://lear.inrialpes.fr/people/vandeweijer/color names.html
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B
j
i (denoted ˜B

j
i ). As summarized in Algorithm 1, two parameters are required in this stage:

sample step δ, and kernel radius ωc of the closing operation. We will discuss the influences
of them in Section 4.3.

Algorithm 1 Attention map computation.

Input: resized RGB image

Output: attention maps and

1: convert from RGB space to color name space C
2: for each C do
3: for 0 255 do
4: THRESH

5: CLOSE

6: FILL

7: CLEAR BORDER

8: INVERT

9: CLOSE

10: FILL

11: CLEAR BORDER
12: end for
13: end for

However, different from BMS which averages all the attention maps, the proposed model
computes the mean attention map Ai of each color name channel Ci separately. All the
attention maps A

j
i and ˜A

j
i share the same weight and are averaged to Ai , which is called

Master Attention Map in this paper. Then, the mean attention map Ā of 11 master attention
mpas can be further calculated as follows:

Ai = 1

2n

n
∑

j=1

(

A
j
i + ˜A

j
i

)

, (4)

Ā = 1

11

11
∑

i=1

Ai . (5)

Actually, if we merge (4) and (5), we can get the same computation procedure of Ā as
introduced in the BMSmodel [52]. The slight difference lies in the usage of 11 master atten-
tion maps. In Pipeline I, the computation of Ā is mainly based on the surroundedness cue.
To make better use of color name space, the proposed framework couples the surrounded-
ness cue with two color cues to compute the color based saliency. In Section 3.4, we will
again use the 11 master attention maps to produce a weighted mean attention map Āw .

3.3 Post-processing

The mean attention map Ā is shown in Fig. 3a. Due to the existence of other surrounded
objects that have clear boundaries and uniform colors (for example, the red flower below
the cat), there are several small salient regions in Ā. In order to outstand the main salient
object (i.e., the cat), we also follow BMS to remove small salient regions by sequentially
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Fig. 3 Post-processing I. a Mean attention map Ā. b Morphological reconstruction. c Normalization result,
and d its histogram. e Intensity mapping curve. fMapping result obtained by using ϑr = 0.02 and ϑg = 1.5.
g Difference between c and f. h Saliency map S

performing two steps of morphological reconstruction operations [14, 45]. The structuring
element used here is a disk shape with the radius ωr . Figure 3b shows the reconstruction
result. It can be observed that those small salient regions have been erased while the original
shape of the salient cat is still remained.

For the task of salient object detection, the ideal output should be a binary map in which
the pixel values of salient objects are 1s while the others are 0s. However, the disadvantage
of the morphological reconstruction is that the high intensity values of salient pixels are
suppressed simultaneously. In addition, the background of the reconstruction result contains
some inconspicuous regions with non-black pixels, which would decrease the detection pre-
cision. To address the above issues, a nonlinear mapping function is introduced to transform
the intensity values to a new range. Overall, we wish to weight the mapping toward the
lower output values and map all the intensity values above a specific threshold to 1s. Sup-
pose that F is the reconstruction result, the intensity mapping function has the syntax form
as follows:

G = MAP
(

F, [0, TF ], ϑg

)

, (6)

where TF is the truncation threshold, ϑg determines the mapping relationship between F

and G. To suppress non-salient pixels, the lower limit of the mapping is set to 0, and ϑg is
set to be greater than 1.

In (6), all the intensity values above TF (i.e., in the interval [TF , 255]) are clipped
and mapped to 1s. For automatically obtaining TF , we exploit the statistical information
extracted from the histogram of F . After scaling F to [0, 255] (see Fig. 3c), we get its his-
togram H where Hk, k ∈ [0, 255] denotes the number of pixels at the kth intensity level.
By summing up the number of pixels from H0, we obtain the minimum intensity level TF

which should satisfy the following criteria:

(1 − ϑr)

255
∑

k=0

Hk �
TF
∑

k=0

Hk , (7)
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that is, the non-salient pixels should cover no less than 1 − ϑr of the total number of image
pixels. For convenience, we abbreviate (6) as

G = MAP
(

F, ϑr , ϑg

)

, (8)

where ϑr is empirically set to be less than 10%.
Figure 3e illustrates the intensity mapping curve with ϑr = 0.02 and ϑg = 1.5. By using

this mapping, the lower (darker) values in the output map (Fig. 3f) are further suppressed.
From the difference map (Fig. 3g), we can see that those non-salient regions on the right
side of the cat have been eliminated. Finally, we perform a hole-filling operation to generate
the saliency map S. The whole post-processing procedure is summarized in Algorithm 2. In
Section 4.3, we will discuss the influences of the parameters ωr , ϑr , and ϑg .

Algorithm 2 Post-processing I.

Input: mean attention map

Output: saliency map

1: RECONSTRUCT
2: NORMALIZE
3: MAP
4: FILL

3.4 Global color cue based saliency

As indicated previously, we then introduce a color-based saliency algorithm to overcome
the limitation of only using the surroundedness cue. In order to take advantage of color
attributes, two global color cues including statistic and contrast, are inferred from color
name image and employed to compute weighting coefficients and matrices. The 11 master
attention maps obtained in Section 3.2 are coupled with two kinds of weights to further
produce a weighted saliency map Sw .

First, we again use the im2c function [46] to convert each pixel value of the resized
RGB image I from a 3-D RGB value to a probabilistic 11-D vector. By exploiting the index
number of the largest element in the vector, we construct an index mapM where each pixel
has an integer value between 1 and 11. Basing on M, we derive two kinds of weights.

3.4.1 Color name statistic based weights

If we use the corresponding RGB value ci given in Table 1 to represent each pixel in M,
we get the color name image as shown in Fig. 4a. The histogram of the color name image
has totally 11 color levels, where the ith level corresponds to the number of pixels hav-
ing the color name ti . In this paper, the histogram is called Color Name Histogram, as
shown in Fig. 4b. From the color name histogram, we can obtain 11 probability values. The
probability of the ith color name is denoted as fi .

Another cue is the distributions of the color names in M. For the purpose of combining
with 11 master attention maps, we use (9) to construct 11 index matrices. In the ith index
matrix Mi , any element value equal to i is set to 1, otherwise is set to 0:

Mi(x, y) =
{

1 , if M(x, y) = i ;
0 , otherwise .

(9)
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Fig. 4 Color name image and histogram. a Color name image. b Color name histogram

As discussed in Section 3.2, the attention map Ai of the ith color name channel is com-
puted by linearly averaging boolean maps, where all the foreground regions that connected
to the image borders are abandoned. For any boolean map, all the pixels in the surrounded
regions share the same weight. To jointly consider the frequencies and distributions of dif-
ferent color names, we simply combine fi and Mi to obtain the first kind of weights, i.e.,
weighting matrices

Wi = fiMi . (10)

3.4.2 Color name contrast based weights

Mainly inspired by [51] and [7], we calculate the second kind of weights, i.e., the contrast
based weighting coefficients. The weight of each color name is defined as its color contrast
to all the other color names. All the pixels having the same color name share the same
weight. For the color distance metric, we directly use the RGB values of 11 color names
given in Table 1. Specifically, the weighting coefficient wi of the color name ti is defined
as

wi =
11
∑

j=1

fj

∥

∥ci − cj

∥

∥

2
2 , (11)

where
∥

∥ci − cj

∥

∥

2 is the �2-norm of the color difference between the color names ti and tj .
By integrating two kinds of weights into 11 master attention maps and averaging them,

we compute the weighted mean attention map Āw (see Fig. 5a) as follows:

Āw =
11
∑

i=1

wi · N(Wi ◦ Ai) , (12)

where ◦ denotes the Hadamard product, and N (·) is the normalization function which sets
the values in Āw to [0, 1].

Figure 5b–e illustrate the same post-processing procedure introduced in Section 3.3.
From Fig. 5h, we can see that the hole-filling operation completes the closed dark regions
inside the cat. Finally, we obtain the second saliency map, i.e., the weighted saliency map
Sw with the range [0, 255], as shown in Fig. 5g.

Multimedia Tools and Applications (2020) 79:10873–1089710882



Fig. 5 Applying post-processing I to Āw . a Weighted mean attention map Āw . b Morphological recon-
struction. c Normalization result, and d its histogram. e Intensity mapping result. f Difference bet-
ween c and e. g Weighted saliency map Sw . h Difference between e and g for the demonstration of
hole-filling

3.5 Combination

To couple with the saliency maps S and Sw , we simply average them at the first step of
the combination stage. The original output is illustrated in Fig. 6a. Considering that the use
of saliency maps is to assist in salient object segmentation, the original combination result
is obviously not ideal. First, for the purpose of eliminating the perceptually insignificant
regions outside the cat, we perform an intensity mapping in the post-processing I, which
simultaneously suppresses the inner saliency and subsequently results in an indeterminate
object region in S. Second, in Sw the salient object has a clear contour, but apparently shows
a nonuniform intensity distribution. Third, the locations of the regions with higher saliency
values are completely different between two saliency maps.

To address the above issues, a truncation operation is introduced to clip the original
output. Intuitively, we wish the resultant salient object to have a uniform intensity distribu-
tion, which can be further highlighted by using a post-processing procedure. Since both S

Fig. 6 Combination. a Original output of averaging Fig. 3h and g. b Truncation curve. cMean saliency map
S̄
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and Sw have been normalized to the range [0, 255], we define the improved mean saliency
map S̄ as

S̄ = [S + Sw]2550

2
, (13)

where [ · ]2550 is the operator for truncating the inner to have values between 0 and 255.
As illustrated in Fig. 6b, the above definition causes a piecewise mapping, in which the

values above 128 are clipped and the others stay unchanged. From Fig. 6c, we can see
the resultant map S̄ occupies the common salient parts between S and Sw . Although the
detected region has lower saliency, the whole region is uniform and clearly stands out of
the background. This means that we also can perform a post-processing operation on S̄ to
refine its saliency.

Algorithm 3 Post-processing II.

Input: mean saliency map

Output: final result

1: MAP
2: FILL
3: RESIZE

A new post-processing procedure is summarized in Algorithm 3. Compared with Algo-
rithm 2, the difference is that this procedure only includes two operations: intensity mapping
and hole-filling. For the former operation, we use the same parameter settings as before.
Figure 7a shows the histogram of the mean saliency map S̄, the intensity mapping curve
is illustrated in Fig. 7b. Note that different from Fig. 3e, here the intensity mapping curve
maps the inputs in the range [0, 128] to the outputs in the range [0, 255]. After filling all the
small dark holes in the object region, we obtain the final saliency result ̂S of the proposed
model, as shown in Fig. 7c. It can be seen that our model well suppresses the image back-
ground and uniformly highlights the foreground object. More importantly, for the future
task of salient object segmentation, we can easily perform a thresholding operation on ̂S

while generate more stable segmentation results over a wide range of thresholds.

4 Experiments

We evaluate the proposed model with twenty-one saliency models including AC [2],
BMS [52], CA [12], COV [11], FES [42], FT [3], GC [8], GU [8], HC [7], HFT [23],

Fig. 7 Post-processing II. a Histogram of Fig. 6c. b Intensity mapping curve. c Final result ̂S
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MSS [1], PCA [28], RC [7], RPC [25], SEG [35], SeR [39], SIM [31], SR [17], SUN [53],
SWD [10], and TLLT [13] on three benchmark data sets: ASD [3, 24], ECSSD [40, 48], and
ImgSal [22, 23]. The used saliency maps of the above models are from:

– For BMS,2 HFT,3 HS,4 RPC,5 and TLLT6 over all the data sets, we use the author-
provided saliency maps, or run the authors’ codes to obtain saliency maps.

– For the AC, CA, FT, HC, RC, and SR models on the ASD data set, we directly use the
saliency maps provided by Cheng et al. [7].7 For the remainder models on ASD, we
retrieve the related saliency maps from the MSRA10K database [9].8

– For the remainder models, we employ the implementation of the salient object detection
benchmark published by Borji et al. [6].9 On the ECSSD data set, the saliency maps
come directly from the author-provided results; on the ImgSal data set, we run the
authors’ source code to generate saliency maps.

4.1 Data sets

The popular ASD data set (a.k.a, MSRA1000) is a subset of MSRA5000 [24].10 The
original MSRA5000 data set contains 5000 images with the labeled rectangles from
nine participants. Achanta et al. [3] consider that the use of saliency maps is for salient
object segmentation, then derive ASD with 1000 images from MSRA5000. Instead of
the user-drawn rectangles around salient regions used in [24], the ASD data set provides
the object-contour based ground truth for more accurate comparisons of segmentation
results.11

The ECSSD data set is an extension of CSSD.12 In order to represent more general situ-
ations of natural images than ASD, Yan et al. construct the CSSD data set, which contains
200 images with diversified patterns in both foreground and background [48]. Subsequently,
they extend CSSD to a larger data set named ECSSD, which includes 1000 structurally
complex images and pixel-wise ground truth masks labeled by five helpers [40].

In addition, we evaluate the proposed model on the ImgSal data set, which is designed
for the detection of salient regions of different sizes [22, 23]. The ImgSal contains 235
images collected using Google, and provides both region ground truth (human labeled) and
fixation ground truth (by eye tracker). For region ground truth, the authors ask nineteen
naive subjects to label the images in a random manner, and generate two kinds of labeling
results for each image: binary map and probability map. In our experiments, we only use
the binary maps for evaluating saliency detection results.

2http://cs-people.bu.edu/jmzhang/BMS/BMS.html
3http://www.escience.cn/people/jianli/DataBase.html
4http://www.cse.cuhk.edu.hk/leojia/projects/hsaliency/
5http://www.loujing.com/rpc-saliency/
6http://www.escience.cn/people/chengong/Codes.html
7http://cg.cs.tsinghua.edu.cn/people/∼cmm/Saliency/Index.htm
8http://mmcheng.net/msra10k/
9http://mmcheng.net/salobjbenchmark/
10http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/salient object.htm
11http://ivrl.epfl.ch/supplementary material/RK CVPR09/
12http://www.cse.cuhk.edu.hk/leojia/projects/hsaliency/dataset.html
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4.2 Experimental setup

The common used metrics to evaluate salient object detection models are Precision-Recall
and Fβ -measure. For an input image, the resultant saliency map is a gray-scale image having
integer values in the range [0, 255]. So we can partition it to a binary map M by using
a threshold, then compute precision and recall by comparing M with the corresponding
ground truth G as follows:

Precision = |M ∩ G|
|M| , Recall = |M ∩ G|

|G| , (14)

where | · | indicates the number of the foreground pixels. Moreover, to jointly evaluate
precision and recall, the Fβ -measure can be computed as

Fβ = (1 + β2) × Precision × Recall

β2 × Precision + Recall
, (15)

where β2 is set to 0.3 for emphasizing the precision as suggested in [3].
In our experiments, two binarization ways are used to partition saliency maps.

1) Fixed Thresholding: We vary a threshold Tf from 0 to 255 to compute the scores
of precision, recall and Fβ -measure. Besides plotting the Precision-Recall and Fβ -
measure curves, we report two statistics for quantitative evaluation, i.e., average Fβ

score (denoted “AvgF”) and maximum Fβ score (denoted “MaxF”).
2) Adaptive Thresholding: As presented in [3], we use an adaptive threshold Ta (cf. (16))

to partition̂S and compute the scores of precision, recall and Fβ -measure. Besides plot-
ting Precision-Recall bars, we also report the Fβ score obtained by using Ta (denoted
“AdpF”):

Ta = 2

W × H

W
∑

x=1

H
∑

y=1

̂S(x, y) , (16)

where W and H are the width and height of̂S respectively,̂S(x, y) is the saliency value
at the coordinate (x, y).

4.3 Parameter analysis

The proposed model includes five parameters: sample step δ, kernel radius ωc of closing
operation, kernel radius ωr of morphological reconstruction, saturation ratio ϑr and gamma
ϑg of intensity mapping. To find the optimal parameter setting, we exploit the “MaxF”
metric suggested in [29] to compare the saliency maps obtained using different parameter
settings. After 256 Fβ scores have been computed by fixed thresholding, the maximum one
is chosen as the best score for each group of parameter setting. In our experiments, the
ranges of five parameters are: δ ∈ [4 : 4 : 40], ωc ∈ [1 : 20], ωr ∈ [1 : 20], ϑr ∈ [0.001 :
0.001 : 0.009] ∪ [0.01 : 0.01 : 0.1], and ϑg ∈ [1.0 : 0.1 : 3.0], respectively.

Figure 8 shows the influences of five parameters on the evaluation data sets. First, the
proposed model is not sensitive to the parameter ϑg , while varying it from 1.0 to 3.0 rarely
changes the MaxF scores. Second, the parameters ωc, ωr , and ϑr have direct impacts on
MaxF, especially on the ImgSal data set. Overall, each MaxF curve shows a slight upward
trend as the parameter value increases, then starts to drop after the MaxF reached the sum-
mit. Compared with ASD or ECSSD, the influences of the above three parameters are more
apparent on the ImgSal data set. Third, the sample step δ does not significantly impact on
MaxF, all the curves do not clearly show the unimodal distributions. However, the runtime
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Fig. 8 Parameter analysis of the proposed model

of the proposed model is directly influenced by the sample step. As the value of δ decreases,
it typically results in lower speed performance.

Based on the diversity of three data sets, we further use the average MaxF metric to
determine the optimal parameter values. After three MaxF curves of each parameter have
been obtained, we simply average them and choose the location of the maximum as the
optimal value of each parameter. The black curves in Fig. 8 (indicated by “Average”) exhibit
the trends of five parameters. The optimal values of five parameters are reported in Table 2.

4.4 Results

We present the statistical comparison results of the proposed model compared with twenty-
one saliency models. Figure 9a and b show the precision-recall and Fβ -measure curves
produced by fixed thresholding. The precision-recall bars generated by utilizing the adaptive
threshold Ta are presented in Fig. 9c. More quantitative details are given in Fig. 11.

Table 2 Optimal parameter
values Parameter Optimal value

δ 8

ωc 14

ωr 14

ϑr 0.02

ϑg 1.5
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Fig. 9 Performance of the proposed model compared with twenty-one saliency models on ASD [3, 24],
ECSSD [40, 48], and ImgSal [22, 23], respectively. a Precision-Recall curves. b Fβ -measure curves. c
Precision-Recall bars

Due to the intensity mapping used in the post-processing procedure, the resultant curves
of our model clearly present two noticeable characteristics: one is that the recall scores span
a more narrow range; the other is that the Fβ -measure curves tend to be more flat after they
rapidly reach the summits. Although having some disadvantages in the precision, our model
has higher Fβ scores, especially on the ECSSD and ImgSal data sets. The crucial advantage
of our model indeed is associated with the essential task of salient object detection, which
is to solve a salient foreground segmentation problem [6].

A good salient object detection model should generate accurate saliency maps with
evenly highlighted foregrounds and thoroughly suppressed backgrounds. Then an easy way
to extract salient objects is to binarize the saliency maps with a single fixed threshold. How-
ever, this threshold is quite difficult to determine automatically. In practice, we usually use
the maximum Fβ score (i.e., MaxF) to evaluate the performance of a saliency model, and
choose the location of the MaxF as the optimal segmentation threshold [29]. Suppose that
a saliency map is the same as its ground truth mask, the Fβ -measure curve would be a
horizontal line. Contrarily, if the Fβ -measure curve is a horizontal line, we can obtain the
identical segmentation results at any threshold in [0, 255]. Therefore, for two models having
the same MaxF, we prefer to select the one which produces a more flat Fβ -measure curve.
This means that the segmentation results would be more stable (that is, virtually unchanged)
over a wide range of thresholds.

Figure 10 shows a visual comparison of the saliency maps generated by different models.
For these example images, our model generates more accurate saliency maps, which are very
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close to the corresponding ground truth masks. The salient regions detected by our model
have uniform intensities and well-defined boundaries, which result in a simple thresholding
for the subsequent salient object segmentation.

In Fig. 11, we report the quantitative statistics of the three evaluation metrics discussed
earlier. The baseline scores, indicated by “Average”, are simply the average of evaluation
scores. With respect to AvgF, TLLT ranks the first on ASD. The proposed model outper-
forms all the others on ECSSD and ImgSal. Obviously, this is mainly owed to more flat
Fβ -measure curves in a wide range.

However, on the ASD and ECSSD data sets, our model has some disadvantages in terms
of MaxF and AdpF. For the MaxF metric, TLLT performs the best on the ASD data set,
and ranks the third on ECSSD. For the AdpF metric, TLLT also ranks the first on ASD,
while on ECSSD the RC model performs the best. However, our model is among top three
models in terms of both MaxF and AdpF on these two data sets. On the ImgSal data set, our
model again outperforms all the others with large margins. Moreover, compared with ASD
and ECSSD, the average performances of all the models are lower on ImgSal. It means that
this data set is more challenging because the images collected in it contain salient regions
of different sizes.

Finally, on average, the proposed model performs the best over all the compared models.
Besides, the best two models are TLLT and BMS. The MaxF scores of nine models are
lower than the average score. The top five worst models are SUN, SR, AC, SIM, and SeR.
Except AC, the other four are eye fixation prediction models, which have no advantages
for salient object detection because the output saliency maps are blurred and sparse. But
this does not necessarily mean that the eye fixation prediction models are not suitable for

Fig. 10 Visual comparison of salient object detection results. Top three rows, middle three rows, and bottom
three rows are from ASD [3, 24], ECSSD [40, 48], and ImgSal [22, 23], respectively. a Input images, and b
ground truth masks. Saliency maps produced by using c the proposed CNS model, d RPC [25], e BMS [52],
f FES [42], g GC [8], h HFT [23], i PCA [28], j RC [7], and k TLLT [13]
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Fig. 11 Statistics of average Fβ (AvgF), maximum Fβ (MaxF), and Fβ using adaptive threshold (AdpF) on
three evaluation data sets. The top three scores under each metric are highlighted in red, green, and blue,
respectively. See the text for details

detecting salient objects. For example, the BMS model is initially designed for the task of
eye fixation prediction. We can see that on average it ranks the third and performs better
than most of the salient object detection models evaluated in our experiments.

4.5 Discussions

Although the proposed model performs well on the evaluation data sets, it does fail in some
cases. These failures are mainly caused by three visual attributes implicitly used for iden-
tifying salient objects: location, color, and size. Figure 12 shows several hard image cases
collected from the evaluation data sets. The third row are the color name images annotated
by using the RGB colors given in Table 1.

– Location: The key idea of BMS is the Gestalt principle based surroundedness, thus the
salient regions connected to the image borders would be masked out in the generation
of attention maps, as shown in Fig. 12b.

– Color: The proposed model originates from BMS, and exploits eleven color name chan-
nels for figure-ground segregation. Sometimes, the foreground objects do not directly
touch the image borders, but may have very similar colors to the backgrounds. For
example, in the third rows of Fig. 12c and d, the RGB colors of the manually labeled
salient objects (the horse and the statue) and some background regions (e.g., the val-
ley and the plinth) are almost the same. While salient objects and image borders are
connected by background elements, the salient objects are always removed in the
generation of attention maps. Moreover, the color statistics based global contrast is
introduced in the proposed model. The color similarities between foreground regions
and background elements impact the ability of literally popping out salient objects (cf.
Fig. 12c and d).
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Fig. 12 Hard image cases. Left two columns, middle two columns, and right two columns are from ASD [3,
24], ECSSD [40, 48], and ImgSal [22, 23], respectively. Input: input images. GT: ground truth masks. CN:
color name images. CNS: salient object detection results of the proposed model

– Size: In the proposed model, some morphological operations, including closing and
reconstruction, are used to compute saliency maps. The influences of the parameters
ωc and ωr have been presented in Fig. 8. These parameters have a substantial impact
on the outputs of our model, especially on the ImgSal data set. As Fig. 12e and f show,
the manually labeled regions are eroded because the morphological structures are larger
than the sizes of these regions.

– Another hard case is caused by the thin artificial borders around some test images, as
illustrated in Fig. 12a. When doing the clear-border operation on boolean maps, the
proposed model will regard the inner area as a whole region which is surrounded by an
enclosed boundary, and does not set any of the foreground pixels to 0. Such a processing
mechanism leaves unchanged background elements inside the artificial borders, and
results in the failure of figure-ground segregation.

Clearly, the proposed model focuses on the bottom-up image processing technique, and
only exploits some low-level image features. Therefore, it fails to highlight the regions
that have similar colors to their surroundings. One way to tackle this issue is to invoke
more complex visual features. Second, under the definition of surroundedness, the regions
connected to the image borders are not enclosed by any complete outer contour. This results
in the absence of object-level information in the attention map computation. The above
problem can be solved by invoking some background priors and top-down cues. Finally,
the proposed model works well for detecting large salient objects, but is not suitable for
small ones. It would be interesting to adopt a multi-scale strategy or automatically seek the
optimal scale for the detection of different sizes of salient objects.

5 Conclusions

Throughout this paper, we present a salient object detection model based on color name
space. Considering the outstanding contribution of color contrast for saliency detection,
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a unified framework is constructed to overcome the limitation of the boolean map based
saliency. By exploiting several visual features with respect to linguistic color names, we
suggest that the model of fusing color attributes provides superior performance over that
only based on the surroundedness cue. Moreover, we propose an improved post-processing
procedure to uniformly smooth and highlight salient regions, so that the detected salient
objects have high and constant intensity levels for the convenience of object segmentation.
Experimental results indicate the performance improvement of the proposed model on three
evaluation data sets.

With regard to future work, first, we intend to invoke a background measure to handle the
salient objects that heavily connected to the image borders. Second, it would be interesting
to incorporate more visual features and top-down cues to solve the problem of color confu-
sion between foreground regions and backgrounds. Third, for the morphological structures
used in the proposed model, only a fixed value is chosen as the optimal kernel radius, which
results in the loss of small salient objects. We have noted that an adaptive radius can effec-
tively address this issue. How to automatically determine the radius size is left to future
investigation. Finally, the current version of our MATLAB code is implemented for the
purpose of academic research. We further plan to optimize the code to improve the speed
performance of the proposed model.
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